Lecture 5.

Theme. Ion Coordination Polymerization.

Aim: generate the following learning outcomes:

- determine the type of polymerization (anionic, cationic, ion-coordination);
- -to determine the types of chain breakage in various variants of ion polymerization;
- to find the relationship between the conditions of ion polymerization with the structure of synthesized polymers;

Purpose:

To explain the mechanism, catalysts, and characteristics of ion coordination polymerization, with emphasis on its industrial importance in producing stereoregular polymers such as polyethylene and polypropylene.

Lecture content:

Features of ionic polymerization of cyclic monomers.

Characteristics of monomers capable of entering into Ion Coordination polymerization. Catalysts and co-catalysts.

Growth and restriction of chain growth during Ion Coordination polymerization. Kinetics of the process.

Main Questions:

- 1. What is ion coordination polymerization?
- 2. How does it differ from radical and ionic polymerization?
- 3. What are the main types of coordination catalysts?
- 4. What is the mechanism of coordination polymerization?
- 5. What are the main advantages, limitations, and industrial applications of this process?

Key Theses:

1. Definition and General Concept

- Ion coordination polymerization is a type of addition chain-growth polymerization in which polymerization occurs through coordination of a monomer to a metal center in a transition metal complex catalyst.
- The growing polymer chain remains attached to the metal atom during the entire process, and new monomers are inserted in a controlled, stereospecific manner.
- The process involves both **ionic** and **coordination** interactions between the monomer and the catalyst.

2. Distinction from Other Polymerization Types

- Unlike **radical** and **ionic** polymerizations, in ion coordination polymerization the growth of the polymer chain proceeds via a **coordination mechanism** with a **metal catalyst**, not through free radicals or ionic centers.
- This method enables **control of the polymer's stereochemistry** (isotactic, syndiotactic, or atactic arrangement).

3. Catalysts

The most important catalysts are **transition metal compounds** combined with organometallic co-catalysts.

Main catalytic systems:

1. Ziegler-Natta catalysts

- o Developed by Karl Ziegler and Giulio Natta (1950s).
- o Composed of a transition metal compound (e.g., TiCl₄, TiCl₃) and an organoaluminum compound (e.g., Al(C₂H₅)₃).
- \circ Used for polymerization of ethylene, propylene, and other α -olefins.

2. Metallocene catalysts

- o Contain a single metal atom (e.g., Ti, Zr, Hf) sandwiched between cyclopentadienyl ligands.
- o Offer high control over molecular weight and stereoregularity.
- o Example: Cp₂ZrCl₂ with methylaluminoxane (MAO) as co-catalyst.

3. Post-metallocene catalysts

 Modern systems allowing fine-tuning of polymer microstructure and comonomer incorporation.

4. Mechanism of Coordination Polymerization

The polymerization proceeds through four main stages:

1. Initiation:

- The active metal complex forms when the transition metal compound reacts with the organoaluminum co-catalyst.
- o A monomer (e.g., ethylene) coordinates to the vacant site on the metal center.

2. Insertion (Propagation):

- The coordinated monomer inserts into the metal—carbon bond of the growing chain.
- o This process repeats, extending the chain in a controlled fashion.

3. Termination:

o Chain growth stops when the polymer is released from the metal center, often by reaction with hydrogen or another chain-transfer agent.

4. Regeneration of Catalyst:

o The metal site becomes available again for coordination with a new monomer, continuing the cycle.

5. Kinetic and Structural Control

- The polymerization rate depends on monomer concentration, catalyst type, and temperature.
- Stereoregularity of the polymer (arrangement of side groups) is determined by the geometry of the metal complex and how monomers approach the active site.
- This allows production of **isotactic** (same side), **syndiotactic** (alternating), or **atactic** (random) polymers.

6. Advantages of Coordination Polymerization

- Produces polymers with high molecular weight and narrow molecular weight distribution.
- Enables control over tacticity and crystallinity.
- Allows polymerization of monomers that are difficult to polymerize by other methods (e.g., α -olefins).
- High catalyst efficiency and low reaction temperatures.

7. Industrial Significance

- **Polyethylene and polypropylene** are the most important products of coordination polymerization.
- These materials are used in packaging, fibers, automotive parts, and countless consumer goods.

• The method revolutionized polymer production and earned **Ziegler and Natta** the Nobel Prize in Chemistry (1963).

Control Questions:

- 1. Define ion coordination polymerization.
- 2. What distinguishes this process from radical and ionic polymerization?
- 3. What are Ziegler–Natta and metallocene catalysts?
- 4. Describe the mechanism of coordination polymerization.
- 5. How does catalyst structure influence polymer stereoregularity?
- 6. What are the main advantages of ion coordination polymerization?
- 7. Name industrial polymers produced by this method.

References for lecture content:

- 1. Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, Second Edition 2nd Edition / by Manas Chanda, CRC Press; 2nd edition (January 11, 2013)
- 2. Polymer Chemistry 2nd Edition / by Paul C. Hiemenz, Timothy P. Lodge, CRC Press; 2nd edition (February 15, 2007)
- 3. Семчиков Ю.Д. Высокомолекулярные соединения: Учебник для вузов. М.:Академия, 2003, 368.
- 4. Киреев В.В. Высокомолекулярные соединения. Учебник. М.: -Юрайт.- 2015.-602 с.
- 5. Зезин А.Б. Высокомолекулярные соединения. Учебник и практикум. М.: -Юрайт.-2017. 340 с.
- 6. В.Н.Кулезнев, В.А.Шершнев. Химия и физика полимеров. М.: Колос С, 2007.- 366с.
- 7. Тугов И.И., Кострыкина. Химия и физика полимеров. –М: Химия,1989. 430c.
- 8. Ергожин Е.Е., Құрманәлиев М.Қ. Жоғары молекулалық қосылыстар химиясы. Алматы, 2008, 407 б.
- 9. Абдықалыкова Р.А. Полимерлерді хим. түрлендіру ж/е модиф. //Оқу құр. -Қазақ унив.-2003.-44 б.

- 10. Абдықалыкова Р.А., Рахметуллаева Р.К., Үркімбаева П.И. Оқу құралы. Алматы, «Қазақ университеті», 2011. -177 бет
- 11. Қаржаубаева Р.Ғ. Полимерлеу процестерінің химиясы //Оқу құр. -Қазақ унив.-2002, 80б.

Internet resources:

- 12. http://www.pslc.ws/index.htm
- 13. http://www.xumuk.ru/
- 14. http://www.hemi.nsu.ru/